Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Insufficient Chilling Effects Vary among Boreal Tree Species and Chilling Duration.

Identifieur interne : 001326 ( Main/Exploration ); précédent : 001325; suivant : 001327

Insufficient Chilling Effects Vary among Boreal Tree Species and Chilling Duration.

Auteurs : Rongzhou Man [Canada] ; Pengxin Lu [Canada] ; Qing-Lai Dang [Canada]

Source :

RBID : pubmed:28861091

Abstract

Insufficient chilling resulting from rising winter temperatures associated with climate warming has been an area of particular interest in boreal and temperate regions where a period of cool temperatures in fall and winter is required to break plant dormancy. In this study, we examined the budburst and growth of trembling aspen (Populus tremuloides Michx.), balsam poplar (Populus balsamifera L.), white birch (Betula papyrifera Marsh.), black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca (Moench) Voss), jack pine (Pinus banksiana Lamb.), and lodgepole pine (Pinus contorta Dougl. ex. Loud.) seedlings subjected to typical northern Ontario, Canada, spring conditions in climate chambers after different exposures to natural chilling. Results indicate that chilling requirements (cumulative weighted chilling hours) differed substantially among the seven species, ranging from 300 to 500 h for spruce seedlings to more than 1100 h for trembling aspen and lodgepole pine. Only spruce seedlings had fulfilled their chilling requirements before December 31, whereas the other species continued chilling well into March and April. Species with lower chilling requirements needed more heat accumulation for budburst and vice versa. Insufficient chilling delayed budburst but only extremely restricted chilling hours (<400) resulted in abnormal budburst and growth, including reduced needle and shoot expansion, early budburst in lower crowns, and erratic budburst on lower stems and roots. Effects, however, depended on both the species' chilling requirements and the chilling-heat relationship. Among the seven tree species examined, trembling aspen is most likely to be affected by reduced chilling accumulation possible under future climate scenarios, followed by balsam poplar, white birch, lodgepole pine, and jack pine. Black and white spruce are least likely to be affected by changes in chilling hours.

DOI: 10.3389/fpls.2017.01354
PubMed: 28861091
PubMed Central: PMC5559465


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Insufficient Chilling Effects Vary among Boreal Tree Species and Chilling Duration.</title>
<author>
<name sortKey="Man, Rongzhou" sort="Man, Rongzhou" uniqKey="Man R" first="Rongzhou" last="Man">Rongzhou Man</name>
<affiliation wicri:level="1">
<nlm:affiliation>Ontario Ministry of Natural Resources and Forestry, Ontario Forest Research Institute, Sault Ste. MarieON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Ontario Ministry of Natural Resources and Forestry, Ontario Forest Research Institute, Sault Ste. MarieON</wicri:regionArea>
<wicri:noRegion>Sault Ste. MarieON</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lu, Pengxin" sort="Lu, Pengxin" uniqKey="Lu P" first="Pengxin" last="Lu">Pengxin Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Ontario Ministry of Natural Resources and Forestry, Ontario Forest Research Institute, Sault Ste. MarieON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Ontario Ministry of Natural Resources and Forestry, Ontario Forest Research Institute, Sault Ste. MarieON</wicri:regionArea>
<wicri:noRegion>Sault Ste. MarieON</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dang, Qing Lai" sort="Dang, Qing Lai" uniqKey="Dang Q" first="Qing-Lai" last="Dang">Qing-Lai Dang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Natural Resources Management, Lakehead University, Thunder BayON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Faculty of Natural Resources Management, Lakehead University, Thunder BayON</wicri:regionArea>
<wicri:noRegion>Thunder BayON</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28861091</idno>
<idno type="pmid">28861091</idno>
<idno type="doi">10.3389/fpls.2017.01354</idno>
<idno type="pmc">PMC5559465</idno>
<idno type="wicri:Area/Main/Corpus">001183</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001183</idno>
<idno type="wicri:Area/Main/Curation">001183</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001183</idno>
<idno type="wicri:Area/Main/Exploration">001183</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Insufficient Chilling Effects Vary among Boreal Tree Species and Chilling Duration.</title>
<author>
<name sortKey="Man, Rongzhou" sort="Man, Rongzhou" uniqKey="Man R" first="Rongzhou" last="Man">Rongzhou Man</name>
<affiliation wicri:level="1">
<nlm:affiliation>Ontario Ministry of Natural Resources and Forestry, Ontario Forest Research Institute, Sault Ste. MarieON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Ontario Ministry of Natural Resources and Forestry, Ontario Forest Research Institute, Sault Ste. MarieON</wicri:regionArea>
<wicri:noRegion>Sault Ste. MarieON</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lu, Pengxin" sort="Lu, Pengxin" uniqKey="Lu P" first="Pengxin" last="Lu">Pengxin Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Ontario Ministry of Natural Resources and Forestry, Ontario Forest Research Institute, Sault Ste. MarieON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Ontario Ministry of Natural Resources and Forestry, Ontario Forest Research Institute, Sault Ste. MarieON</wicri:regionArea>
<wicri:noRegion>Sault Ste. MarieON</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dang, Qing Lai" sort="Dang, Qing Lai" uniqKey="Dang Q" first="Qing-Lai" last="Dang">Qing-Lai Dang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Natural Resources Management, Lakehead University, Thunder BayON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Faculty of Natural Resources Management, Lakehead University, Thunder BayON</wicri:regionArea>
<wicri:noRegion>Thunder BayON</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Insufficient chilling resulting from rising winter temperatures associated with climate warming has been an area of particular interest in boreal and temperate regions where a period of cool temperatures in fall and winter is required to break plant dormancy. In this study, we examined the budburst and growth of trembling aspen (
<i>Populus tremuloides</i>
Michx.), balsam poplar (
<i>Populus balsamifera</i>
L.), white birch (
<i>Betula papyrifera</i>
Marsh.), black spruce (
<i>Picea mariana</i>
(Mill.) B.S.P.), white spruce (
<i>Picea glauca</i>
(Moench) Voss), jack pine (
<i>Pinus banksiana</i>
Lamb.), and lodgepole pine (
<i>Pinus contorta</i>
Dougl. ex. Loud.) seedlings subjected to typical northern Ontario, Canada, spring conditions in climate chambers after different exposures to natural chilling. Results indicate that chilling requirements (cumulative weighted chilling hours) differed substantially among the seven species, ranging from 300 to 500 h for spruce seedlings to more than 1100 h for trembling aspen and lodgepole pine. Only spruce seedlings had fulfilled their chilling requirements before December 31, whereas the other species continued chilling well into March and April. Species with lower chilling requirements needed more heat accumulation for budburst and vice versa. Insufficient chilling delayed budburst but only extremely restricted chilling hours (<400) resulted in abnormal budburst and growth, including reduced needle and shoot expansion, early budburst in lower crowns, and erratic budburst on lower stems and roots. Effects, however, depended on both the species' chilling requirements and the chilling-heat relationship. Among the seven tree species examined, trembling aspen is most likely to be affected by reduced chilling accumulation possible under future climate scenarios, followed by balsam poplar, white birch, lodgepole pine, and jack pine. Black and white spruce are least likely to be affected by changes in chilling hours.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">28861091</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Insufficient Chilling Effects Vary among Boreal Tree Species and Chilling Duration.</ArticleTitle>
<Pagination>
<MedlinePgn>1354</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2017.01354</ELocationID>
<Abstract>
<AbstractText>Insufficient chilling resulting from rising winter temperatures associated with climate warming has been an area of particular interest in boreal and temperate regions where a period of cool temperatures in fall and winter is required to break plant dormancy. In this study, we examined the budburst and growth of trembling aspen (
<i>Populus tremuloides</i>
Michx.), balsam poplar (
<i>Populus balsamifera</i>
L.), white birch (
<i>Betula papyrifera</i>
Marsh.), black spruce (
<i>Picea mariana</i>
(Mill.) B.S.P.), white spruce (
<i>Picea glauca</i>
(Moench) Voss), jack pine (
<i>Pinus banksiana</i>
Lamb.), and lodgepole pine (
<i>Pinus contorta</i>
Dougl. ex. Loud.) seedlings subjected to typical northern Ontario, Canada, spring conditions in climate chambers after different exposures to natural chilling. Results indicate that chilling requirements (cumulative weighted chilling hours) differed substantially among the seven species, ranging from 300 to 500 h for spruce seedlings to more than 1100 h for trembling aspen and lodgepole pine. Only spruce seedlings had fulfilled their chilling requirements before December 31, whereas the other species continued chilling well into March and April. Species with lower chilling requirements needed more heat accumulation for budburst and vice versa. Insufficient chilling delayed budburst but only extremely restricted chilling hours (<400) resulted in abnormal budburst and growth, including reduced needle and shoot expansion, early budburst in lower crowns, and erratic budburst on lower stems and roots. Effects, however, depended on both the species' chilling requirements and the chilling-heat relationship. Among the seven tree species examined, trembling aspen is most likely to be affected by reduced chilling accumulation possible under future climate scenarios, followed by balsam poplar, white birch, lodgepole pine, and jack pine. Black and white spruce are least likely to be affected by changes in chilling hours.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Man</LastName>
<ForeName>Rongzhou</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Ontario Ministry of Natural Resources and Forestry, Ontario Forest Research Institute, Sault Ste. MarieON, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Pengxin</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Ontario Ministry of Natural Resources and Forestry, Ontario Forest Research Institute, Sault Ste. MarieON, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dang</LastName>
<ForeName>Qing-Lai</ForeName>
<Initials>QL</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Natural Resources Management, Lakehead University, Thunder BayON, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>08</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">chilling requirement</Keyword>
<Keyword MajorTopicYN="N">climatic warming</Keyword>
<Keyword MajorTopicYN="N">dormancy release</Keyword>
<Keyword MajorTopicYN="N">heat accumulation</Keyword>
<Keyword MajorTopicYN="N">spring bud phenology</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>04</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>07</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>9</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>9</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>9</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28861091</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2017.01354</ArticleId>
<ArticleId IdType="pmc">PMC5559465</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2015 Oct 1;526(7571):104-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26416746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Nov;62(15):5397-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21862485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2006 Apr;26(4):421-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16414921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Dec 21;107(51):22151-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21115833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Oct 10;5:541</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25346748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2013 Jan;94(1):41-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23600239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2003 Sep;23(13):931-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14532017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1994 Jun;14(6):549-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14967673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(1):e53788</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23342001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2014 Jan;20(1):170-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24323535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 1993 Aug;88(4):531-540</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28741760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jun 5;109 (23 ):9000-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22615406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 2000 Dec 7;207(3):337-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11082304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2010 Oct 12;365(1555):3247-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20819816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1995 Nov;15(11):697-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14965987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Sep;191(4):926-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21762163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Apr;198(1):149-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23347086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biometeorol. 2000 Aug;44(2):76-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10993561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Mar 03;6:120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25784922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Apr;202(1):106-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24372373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2008 Dec;28(12):1873-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19193570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 Aug;16(8):412-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21640632</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Man, Rongzhou" sort="Man, Rongzhou" uniqKey="Man R" first="Rongzhou" last="Man">Rongzhou Man</name>
</noRegion>
<name sortKey="Dang, Qing Lai" sort="Dang, Qing Lai" uniqKey="Dang Q" first="Qing-Lai" last="Dang">Qing-Lai Dang</name>
<name sortKey="Lu, Pengxin" sort="Lu, Pengxin" uniqKey="Lu P" first="Pengxin" last="Lu">Pengxin Lu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001326 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001326 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28861091
   |texte=   Insufficient Chilling Effects Vary among Boreal Tree Species and Chilling Duration.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28861091" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020